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Abstract

We determine the Riemannian manifolds for which the group of exact volume preserving dif-
feomorphisms is a totally geodesic subgroup of the group of volume preserving diffeomorphisms,
considering right invariantL2-metrics. The same is done for the subgroup of Hamiltonian diffeo-
morphisms as a subgroup of the group of symplectic diffeomorphisms in the Kähler case. These
are special cases of totally geodesic subgroups of diffeomorphisms with Lie algebras big enough to
detect the vanishing of a symmetric 2-tensor field. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Euler equation for an ideal fluid flow(d/dt)u = −∇uu−gradp is the geodesic equation
on the group of volume preserving diffeomorphisms with right invariantL2-metric, see[1].
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For a compact oriented surface this is the group of symplectic diffeomorphisms. The fact
that the existence of a single valued stream function for the velocity fieldu at the initial
moment implies the existence of a single valued stream function at any other moment of
time, is equivalent to the fact that the group of Hamiltonian diffeomorphisms is totally
geodesic in the group of symplectic diffeomorphisms. We will prove that a closed, oriented
surface having this property either has the first Betti number zero (the Lie algebras of
symplectic and Hamiltonian vector fields coincide) or it is a flat 2-torus.

A much more general classification result is actually true: twisted products of a torus by
a Riemannian (resp. Kähler) manifold with vanishing first Betti number are the only Rie-
mannian (resp. Kähler) manifolds, where the exact volume preserving diffeomorphisms lie
totally geodesic in the Lie group of volume preserving diffeomorphisms (resp. the Hamil-
tonian diffeomorphisms in the symplectic diffeomorphisms). More precisely:

Theorem 1. Let (M, g) be a closed, connected and oriented Riemannian manifold with
volume formµ. Then the following are equivalent:

1. The group of exact volume preserving diffeomorphisms is a totally geodesic subgroup
in the group of all volume preserving diffeomorphisms.

2. Every harmonic1-form is parallel.
3. ric(β1, β2) = 0 for all harmonic1-formsβ1, β2.

4. (M, g) is a twisted product of a flat torusT k = R
k/Λ and a closed, connected, oriented

Riemannian manifold F with vanishing first Betti number, i.e.M = R
k ×Λ F.

5. For all 2-formsα and all harmonic1-formsβ one has
∫
M

g(dδα, δα ∧ β)µ = 0.

This result corrects the Remark 3.1 in[2] that the subgroup of exact volume preserving
diffeomorphisms is totally geodesic in the group of volume preserving diffeomorphisms on
compact manifolds. In their book this remark was used for curvature calculations related to
the diffeomorphism group of a flat torus, where such a statement indeed holds.

Theorem 2. Let (M, g, J, ω) be a closed, connected Kähler manifold. Then the following
are equivalent:

1. The group of Hamiltonian diffeomorphisms is a totally geodesic subgroup in the group
of all symplectic diffeomorphisms.

2. Every harmonic1-form is parallel.
3. ric(β1, β2) = 0 for all harmonic1-formsβ1, β2.
4. (M, g, J, ω) is a twisted product of a flat torus and a closed connected Kähler manifold

with vanishing first Betti number.
5. For all functions f and all harmonic1-formsβ one has

∫
M

(�f )df ∧ β ∧ ωn−1 = 0.
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We also prove that there is no group of diffeomorphismsG ⊂ Diff (M) containing the
group of volume preserving diffeomorphisms (for a manifoldM with volume form) or the
group of symplectic diffeomorphisms (for an almost Kähler manifold) as totally geodesic
subgroups. In particular the group of symplectic diffeomorphisms is not totally geodesic in
the group of volume preserving diffeomorphisms for an almost Kähler manifold.

2. Geodesic equations

The problem can be formulated in the setting of regular Fréchet–Lie groups: given a
regular Fréchet–Lie group in the sense of Kriegl–Michor, see[6], and a (bounded, positive
definite) scalar productg : g× g→ R on the Lie algebrag, we can define a right invariant
metric onG by

Gx(ξ, η) := g((Txρ
x)−1ξ, (Txρ

x)−1η) for ξ, η ∈ TxG,

whereρx denotes the right translation byx onG. The energy functional of a smooth curve
c : R → G is defined by

E(c) =
∫ b

a

Gc(t)(c
′(t), c′(t))dt =

∫ b

a

g(δrc(t), δrc(t))dt,

whereδr denotes the right logarithmic derivative on the Lie groupG.
Assumingc : [a, b] → G to be a geodesic with respect to the right invariant (weak)

Riemannian metric, variational calculus yields

d

dt
u = −ad(u)Tu, u(t) = δrc(t),

where ad(X)T : g → g denotes the adjoint of ad(X) with respect to the Hilbert scalar
product, see[6], which we assume to exist as bounded linear map ad(·)T : g → L(g). A
Lie subgroupH ⊆ G is totally geodesic if any geodesicc with c(a) = e andc′(a) ∈ h
stays inH . This is the case if ad(X)TX ∈ h for all X ∈ h. If there is a geodesic inG in any
direction ofh, then the condition is necessary and sufficient.

The setting for the whole article is the following: given a regular Fréchet–Lie groupG

with Lie algebrag and a bounded, positive definite scalar product ong, we assume that
ad(·)T : g→ L(g) exists and is bounded. Furthermore we are given a splitting subalgebra
h, i.e.h has an orthogonal complementh⊥ in g with respect to the scalar product. We only
assumeg = h⊕ h⊥ as orthogonal direct sum, in the algebraic sense. It follows thath and
h⊥ are closed, and that the orthogonal projections ontoh andh⊥ are bounded with respect
to the Fréchet space topology.h is calledtotally geodesicin g if ad(X)TX ∈ h for allX ∈ h.
The following reformulation of the condition provides the main condition for our work.

Lemma 1. In the situation above,h is totally geodesic ing iff 〈[X, Y ], X〉 = 0 for all X ∈ h
andY ∈ h⊥.

In this article we consider the following important examples of the outlined situation: let
M be a closed, connected and oriented manifold. The regular Fréchet–Lie group Diff(M)
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is modeled on the vector fieldsX(M), a Fréchet space. The Lie algebra isX(M) with
the negative of the usual Lie bracket. The symbol [·, ·] will denote the usual Lie bracket
and ad(X)Y = −[X, Y ]. The following subgroups are regular Fréchet–Lie subgroups of
Diff(M), see[4]:

1. The group Diff(M,µ) of volume preserving diffeomorphisms of(M,µ), whereµ is a
volume form onM; its Lie algebra isX(M,ω), the Lie algebra of divergence free vector
fields.

2. The group Diffex(M,µ) of exact volume preserving diffeomorphisms of(M,µ) with
Lie algebraXex(M,µ) = {X : iXµexact differential form}.

3. The group Diff(M,ω)of symplectic diffeomorphisms of the symplectic manifold(M,ω)

with Lie algebraX(M,ω), the Lie algebra of symplectic vector fields.
4. The group Diffex(M,ω) of Hamiltonian diffeomorphisms of(M,ω) with Lie algebra
Xex(M,ω), the Lie algebra of Hamiltonian vector fields.

Let (M, g) denote a closed connected and orientable Riemannian manifold with Rie-
mannian metricg, ∇ the Levi–Civita covariant derivative andµ the canonical volume form
on M induced by the metricg and a choice of orientation. By(g : T ∗M → TM we de-
note the geometric liftg((ag, α, ·) = α and by)g its inverse. We will omit the indexg
when no confusion is possible. The Hodge-∗-operator is given with respect to the volume
form µ such thatg(β, η)µ = β ∧ ∗η for β, η k-forms, whereg denotes the respective
scalar product on the forms. The exterior derivative is denoted byd, the codifferential by
δ = (−1)n(k+1)+1 ∗ d∗ on k-forms. With this conventiond andδ are adjoint with respect
to scalar product on forms. Furthermore∆ = dδ + δd.

In the case ofG = Diff (M) the adjoint of ad(X), with respect to the induced right
invariantL2-structure, is given by the expression (see[7])

ad(X)TX = ∇XX + (divX)X + 1
2grad(g(X,X)). (1)

We apply here the notions of gradient of a function gradf = ((df ) and divergence of a
vector field divX = −δ()X), i.e.LXµ = div(X)µ. If H ⊆ G is a subgroup with splitting
subalgebrah ⊆ g, then the adjoint inh of ad(X), for X ∈ h is

ad(X)|ThX = π(ad(X)|TgX),

whereπ : g→ h denotes the orthogonal projection.
In particular, by projecting(1) onX(M,µ), we obtain for the volume preserving diffeo-

morphisms Diff(M,µ) the adjoint

ad(X)|TX(M,µ)X = ∇XX + (gradp)(X), �p = div(∇XX).

Such a functionp exists, is unique up to a constant and smooth by application of the smooth
inverse of the Laplacian on its range. Hence(gradp)(X) is a well defined smooth vector
field. Remark, that the orthogonal complement to divergence free vector fields are gradients
of some functions, with respect to theL2-metric, which is easily seen due to the orthogonal
Hodge decompositionX(M) = (g dΩ0(M)⊕(g kerδ, where(g denotes the geometric lift.
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Consequently the geodesic equation on Diff(M,µ) with right invariantL2-metric is

d

dt
u = −∇uu − gradp,

the Euler equation for an ideal fluid flow, see[1].
Let M be a closed connected almost Kähler manifold(M, g, ω, J ), i.e. the symplectic

form ω, the almost complex structureJ and the Riemannian metricg satisfy the relation
g(X, Y ) = ω(X, JY). Note that a Kähler manifold has a natural orientation given byJ .
Moreover we have)ω(X) = −()gX) ◦ J = )g(JX) and(ωϕ = −J(gϕ = (g(ϕ ◦ J ),
especially(ω : T ∗

x M → TxM is an isometry, forJ and(g.
For the symplectic diffeomorphisms Diff(M,ω) we obtain the following adjoint

ad(X)|TX(M,ω)X = ∇XX + 1
2grad(g(X,X)) + (ω((δα)(X)),

d((δα)(X)) = −di∇XX + 1
2grad(g(X,X))ω,

by projecting(1) onX(M,ω). Indeed, via the symplectic lift the orthogonal Hodge decom-
position of

Ω1(M) = dΩ0(M) ⊕H1(M) ⊕ δΩ2(M),

can be carried to the vector fields. Symplectic vector fields are those withLXω = d()ωX) =
0, i.e.)ωX ∈ kerd = dΩ0(M)⊕H1(M). So there is some (symplectic) harmonic part and
some Hamiltonian part, see[4]. In the above formula(δα)(X) is uniquely determined and
smoothly dependent onX ∈ X(M,ω), by the Hodge decomposition. The divergence part is
zero, since symplectic diffeomorphisms are volume preserving. Consequently the geodesic
equation on Diff(M,ω) with right invariantL2-metric is

d

dt
u = −∇uu − 1

2
grad(g(u, u)) − (ω(δα).

3. Proof of the main results

In this section we develop the necessary notions and prove the main results of the ar-
ticle. These areTheorems 1 and 2from Section 1, where we provide several equivalent
conditions, geometric and analytic ones, in the Riemannian and Kähler case, such that the
exact volume preserving diffeomorphisms lie totally geodesic in the group of volume pre-
serving diffeomorphisms, respectively the Hamiltonian diffeomorphisms in the symplectic
diffeomorphisms.

For a 1-formϕ we set

(∇ϕ)sym(X, Y ) := (∇Xϕ)(Y ) + (∇Y ϕ)(X),

the symmetric part of∇ϕ. Note that(ϕ is a Killing vector field, i.e. generates a flow of
isometries, if and only if(∇ϕ)sym = 0. Note also, that

dϕ(X, Y ) = (∇Xϕ)(Y ) − (∇Y ϕ)(X),

the skew symmetric part of∇ϕ, and tr(∇ϕ)sym = 2div(ϕ = −2δϕ.
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Lemma 2. Let (M, g) be a closed orientedn-dimensional Riemannian manifold andg ⊆
X(M) a closed subalgebra, such thatad(X)T : g→ g exists for allX ∈ g. Then one has

2
∫
M

g(ad(X)T(X), Y )µ =
∫
M

((∇)Y )sym + (div Y )g)(X,X)µ.

Moreover

tr((∇)Y )sym + (div Y )g) = (n + 2)div Y.

Especially the symmetric2-tensor field(∇)Y )sym + (div Y )g = 0 iff (∇)Y )sym = 0, i.e. Y
is Killing.

Proof. We have:∫
g(ad(X)T(X), Y )µ =

∫
g(X, [X, Y ])µ =

∫
(g(X,∇XY) − g(X,∇YX))µ

=
∫ (

iX∇X)Y − 1

2
LYg(X,X)

)
µ

=
∫

1

2
(∇)Y )sym(X,X)µ + 1

2
g(X,X)LYµ

= 1

2

∫ (
(∇)Y )sym + (div Y )g

)
(X,X)µ.

The second statement follows from tr(∇()Y )sym) = 2divY and tr(g) = n. �

Definition 1. We sayg ⊆ X(M) is big enough to detect the vanishing of a symmetric
2-tensor field, if a symmetric 2-tensor fieldT ∈ Γ (S2T ∗M) vanishes if∫

M

T (X, Y )µ = 0 for allX, Y ∈ g.

Remark 1. Let g ⊆ X(M) be the Lie algebra of a Lie group of diffeomorphismsG, such
that ad(·)T : g → L(g) is bounded. SupposeH ⊆ G is a Lie subgroup with splitting Lie
subalgebrah ⊆ g and assume thath is big enough to detect the vanishing of a symmetric
2-tensor. Under these conditionsLemma 2gives a necessary and sufficient condition for
h to be totally geodesic ing, namely(∇)Y )sym = 0 for all Y ∈ h⊥. In particularY is a
Killing vector field for all Y ∈ h⊥. Since the Lie algebra of Killing vector fields is finite
dimensional, it follows that a Lie algebrahbig enough to detect the vanishing of a symmetric
2-tensor field, which is totally geodesic ing, must have finite codimension.

Next we give examples of Lie algebras of vector fields big enough to detect the vanishing
of a symmetric 2-tensor field, needed for the proof ofTheorems 1 and 2: the Lie algebra of
Hamiltonian vector fields and the Lie algebra of exact divergence free vector fields.

Lemma 3. Let (M,ω) be a symplectic manifold. Then the Lie algebra of compactly sup-
ported Hamiltonian vector fields is big enough to detect the vanishing of a symmetric
2-tensor field.
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Proof. SupposeT is a symmetric 2-tensor field, which does not vanish at a point inM.
Using Darboux’s theorem, and rescalingω andT by constants, we may choose a chart
M ⊇ U → (−1,1)2n ⊆ R

2n, such that

ω = dx1 ∧ dx2 + · · · + dx2n−1 ∧ dx2n,

andT22(x) > 0 for all x ∈ (−1,1)2n, whereT = ∑
Tij dxi ⊗ dxj . Now choose a bump

functionb : R → [0,1], such thatb(t) = 0 for |t | ≥ 1
2 andb(0) = 1. For 0< ε ≤ 1 we

define

λε(x
1, . . . , x2n) := b

(
x1

ε

)
b(x2) · · · b(x2n),

andZε := (ω dλε. Since the support ofλε is contained in(−ε, ε)×(−1,1)2n−1,Zε extends
by zero to a compactly supported Hamiltonian vector field onM. An easy calculation shows

lim
ε→0

ε

∫
M

T (Zε, Zε)ω
n

=
∫
(−1,1)2n

(b′(x1)b(x2) · · · b(x2n))2T22(0, x
2, . . . , x2n)ωn > 0,

and hence
∫
M
T (Zε, Zε)ω

n �= 0 for ε small enough. �

Lemma 4. Let(M,µ) be a manifold with volume form,dim(M) > 1.Then the Lie algebra
of compactly supported exact divergence free vector fields is big enough to detect the
vanishing of a symmetric2-tensor field.

Proof. As in the proof ofLemma 3, we choose a chartM ⊇ U → (−1,1)n ⊆ R
n, such

that

µ = dx1 ∧ · · · ∧ dxn

and such thatT22 > 0 onx ∈ (−1,1)n. Take a bump functionb as above and set

λε := b

(
x1

ε

)
b(x2) · · · b(xn).

Now defineiZεµ := d(λε dx3 ∧ · · · ∧ dxn). ThenZε is a compactly supported exact
divergence free vector field onM and

Zε = b

(
x1

ε

)
b′(x2)b(x3) · · · b(xn) ∂

∂x1
− 1

ε
b′

(
x1

ε

)
b(x2) · · · b(xn) ∂

∂x2
.

Again we get

lim
ε→0

ε

∫
M

T (Zε, Zε)µ =
∫
(−1,1)n

(b′(x1)b(x2) · · · b(xn))2T22(εx
1, x2, . . . , xn)µ > 0,

and hence
∫
M
T (Zε, Zε)µ �= 0 for ε small enough. �
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Definition 2 (twisted products). LetT k = R
k/Λ be a flat torus, equipped with the metric

induced from the Euclidean metric onRk. SupposeF is an oriented Riemannian manifold
and thatΛ acts onF by orientation preserving isometries. The total space of the associated
fiber bundleRk ×Λ F → T k is an oriented Riemannian manifold in a natural way. Locally
overT k the metric is the product metric. We call every manifold obtained in this way a
twisted productof a flat torus and the oriented Riemannian manifoldF .

If k is even,F Kähler andΛ acts by isometries preserving the Kähler structure then
R
k ×Λ F → T k is a Kähler manifold in a natural way and we call it a twisted product of a

flat torus with the Kähler manifoldF .

Proof of Theorem 1. Recall that the orthogonal complement ofXex(M,µ) in X(M,µ)

is {(β : β harmonic 1− form}. The equivalence (1)⇔ (2) now follows immediately from
Remark 1, Lemma 4and the fact that for closed 1-forms(∇β)sym = 0 is equivalent to
∇β = 0.

(2)⇒ (3) is obvious from the definition of the curvatureRX,YZ = ∇X∇YZ−∇Y∇XZ−
∇[X,Y ]Z and ric= −tr13R.

The integrated Bochner equation on 1-forms, see for example[5], takes the form

〈�α, α〉 = ‖∇α‖2 +
∫
M

ric(α, α)µ,

and (3)⇒ (2) follows.
(4)⇒ (2): supposeM = R

k ×ΛF . SinceH 1(F ; R) = 0 it follows from the Leray–Serre
spectral sequence that the projectionM → T k induces an isomorphismH 1(M; R) ∼=
H 1(T k; R). So every harmonic 1-form comes fromT k and hence is parallel.

(2) ⇒ (4), cf. Theorem 8.5 in[5] and[3]: suppose(M, g) is a closed, connected and
oriented Riemannian manifold, such that every harmonic 1-form is parallel. Choose an
orthonormal base{β1, . . . , βk} of harmonic 1-forms. Since they are parallel they are or-
thonormal at every point inM. Choose a base pointx0 ∈ M, let U ⊆ π1(M, x0) be the
kernel of the Huréwicz-homomorphism

π1(M, x0) → H1(M; Z) → H1(M; Z)

Tor(H1(M; Z))
∼= Z

k,

and letπ : M̃ → M be the covering ofM, which hasU as characteristic subgroup. This
is a normal covering, the group of deck transformations isZ

k andπ∗βi = dfi for smooth
functionsfi : M̃ → R. Letz0 be a base point iñM sitting abovex0 and assumefi(z0) = 0.
Consider the mapping

f : M̃ → R
k, f (z) = (f1(z), . . . , fk(z)).

Obviously this is a proper, subjective submersion andF := f−1(0) is a compact submani-
fold. LetXi := (gπ

∗βi . Then theXi are orthonormal at every point and they are all parallel,
especially they commute. Consider

κ : F × R
k → M̃, κ(z, t) := (FlX1

t1
◦ · · · ◦ FlXk

tk
)(z).

Of course we havef ◦ κ = pr2, and it follows easily, thatκ is a diffeomorphism. SoF is
closed, connected, oriented andH 1(F ; R) = H 1(M̃; R) = 0. Moreoverκ∗g is the product
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metric of the induced metric onF and the standard metric onRk. Every deck transformation
of M̃ is of the form

F × R
k → F × R

k, (z, t) !→ (ϕλ(z), t + λ),

whereλ ∈ Λ ⊆ R
k andϕλ is an orientation preserving isometry ofF . SoM is a twisted

product, as claimed.
To see (1)⇔ (5) let(δα be an exact volume preserving vector field,α ∈ Ω2(M), and let

β be a harmonic 1-form. Then
∫
M

g(ad((δα)T(δα, (β)µ =
∫
M

g((δα, [(δα, (β])µ = −
∫
M

g((δα, (δ(δα ∧ β))µ

= −
∫
M

g(dδα, δα ∧ β)µ,

where we used

δ(ϕ1 ∧ ϕ2) − (δϕ1) ∧ ϕ2 + ϕ1 ∧ δϕ2 = −)[(ϕ1, (ϕ2] for ϕ1, ϕ2 ∈ Ω1(M),

to obtain [(δα, (β] = −(δ(δα ∧ β) for the second equality. �

Proof of Theorem 2. Recall that the orthogonal complement ofXex(M,ω) in X(M,ω) is
{(ωβ : β harmonic 1-form}. By Remark 1andLemma 3, (1) is equivalent to∇(β ◦J )sym =
∇()g(ωβ)

sym = 0 for all harmonic 1-formsβ. On a Kähler manifold one has�(ϕ ◦ J ) =
(�ϕ) ◦ J for 1-formsϕ. Particularly the space of harmonic 1-forms isJ -invariant, and so
(1) is equivalent to(∇β)sym = 0 and since harmonic 1-forms are closed this is equivalent
to (2).

(2) ⇔ (3) and (4)⇔ (2) are as in the proof ofTheorem 1. For (4)⇔ (2) one needs some
extra arguments: one observes, that the span of theXi constructed in the proof ofTheorem
1, is J -invariant and so is its orthogonal complement. HenceF is a complex submanifold
and therefore a Kähler submanifold. Moreover the complex structure is, locally overT k,
the product structure and so is the symplectic structure as well.

(1) ⇔ (5) follows from the following computation for a functionf and a closed 1-form
β:

∫
M

g(ad((ω df )T(ω df, (ωβ)ω
n

=
∫
M

g((ω df, [(ω df, (ωβ])ωn = −
∫
M

g((ω df, (ω d(L(ωβf ))ω
n

= −
∫
M

g(df, d(L(ωβf ))ω
n

= −
∫
M

(�f )(L(ωβf )ω
n = −n

∫
M

(�f )df ∧ β ∧ ωn−1.

For the second equality we used [(ωϕ1, (ωϕ2] = −(ω(L(ωϕ2ϕ1) for closed 1-formsϕ1, ϕ2,
a relation derived fromi[X,Y ] = LXiY − iYLX. �
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Remark 2. The fact thatM is Kähler was only used to show, that the space of harmonic
1-forms is invariant underJ . In the almost Kähler case the arguments in the proof of
Theorem 2show, that following are equivalent:

1. The group of Hamiltonian diffeomorphisms is a totally geodesic subgroup in the group
of all symplectic diffeomorphisms.

2. (ωβ = (g(β ◦ J ) = −J(gβ is Killing for every harmonic 1-formβ.
3. For all functionsf and all harmonic 1-formsβ one has

∫
M

(�f )df ∧ β ∧ ωn−1 = 0.

Remark 3. The computation in the proof ofTheorem 2shows, that for a functionf ,
ad((ω df )T(ω df = 0 if and only if

∫
M

(�f )df ∧ β ∧ ωn−1 = 0 for all closed 1-formsβ,

even on almost Kähler manifolds. Iff is a ‘generalized eigenvector’ of the Laplacian, i.e.
�f = h ◦ f for some smooth functionh ∈ C∞(R,R), then

∫
M

(�f )df∧β ∧ ωn−1=
∫

M

(h ◦ f )df∧β ∧ ωn−1 =
∫
M

d((H ◦ f )β ∧ ωn−1)=0,

withH an integral ofh, consequently the condition is satisfied. So the geodesic is given by an
exponential. These are examples of a more general method how to solve the geodesic equa-
tion: in the general setting any finite dimensional submanifoldS ⊂ g such that ad(X)TX ∈
TXS for X ∈ S admits the calculation of flow-lines in the manifoldS. In the above case the
submanifoldS is given by a single point.

4. Non-existence results

In this paragraph we show there exists no Lie algebra of vector fieldsg containing the
Lie algebra of divergence free vector fields or the Lie algebra of symplectic vector fields
as totally geodesic Lie subalgebras. For the proof we use the following fact, deduced in
Remark 1: if h is a totally geodesic splitting Lie subalgebra of a Lie algebra of vector fields
g andh is big enough to detect the vanishing of a symmetric 2-tensor field, thenh⊥ consists
of Killing vector fields (in particularh has finite codimension ing).

Corollary 1. LetM be a closed, connected and oriented Riemannian manifold. Then there
does not exist a closed Lie subalgebrag satisfyingX(M,µ) ⊂ g ⊆ X(M), such that
ad(·)T : g→ L(g) is bounded and such thatX(M,µ) is a totally geodesic Lie subalgebra
of g.

This follows fromRemark 1, since Killing vector fields are divergence free.
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Corollary 2. Let (M, g, J, ω) be a closed, connected almost Kähler manifold. Then the
symplectic diffeomorphisms are not totally geodesic in the group of volume preserving
diffeomorphisms, provideddim(M) > 2.

This is also a consequence ofRemark 1, since the Lie algebra of symplectic vector fields
is not of finite codimension in the Lie algebra of divergence free vector fields.

Remark 4. Let K be a compact Lie group acting by isometries on the closed connected
orientable manifold(M, g). In [7] it is shown that the group ofK-equivariant diffeomor-
phisms is a totally geodesic subgroup of Diff(M). Its Lie algebra ofK-invariant vector
fields onM is split, a complement is{X ∈ X(M) :

∫
K
k∗X dk = 0}, infinite dimensional.

This does not contradict the arguments above, since the Lie algebra ofK-invariant vector
fields onM does not detect the vanishing of a symmetric 2-tensor field.

Remark 5. The subgroup of diffeomorphisms ofM fixing a pointx0 is a totally geodesic
subgroup of Diff(M) (see[7]). The subgroup of volume preserving diffeomorphisms fixing
a pointx0 ∈ M has finite codimension (equal to dimM) in Diff (M,µ) and its Lie algebra
is big enough to detect the vanishing of a symmetric 2-tensor field, but it is not totally
geodesic.

A proof, due to Alexander Shnirelman, goes as follows in the caseM is a flat torus. If
u0(x) is any divergence free vector field ofM, andx0 an arbitrary point, we can form a
vector fieldv0(x) = u0(x) − u0(x0); thenv0(x0) = 0, and if we assume that the group
of volume preserving diffeomorphisms of the flat torus fixing a point is totally geodesic in
the group of volume preserving diffeomorphisms, the solutionv(x, t) with initial condition
v0(x) should satisfyv(x0, t) = 0 for all t . A short computation shows thatv(x, t) =
u(x+u0(x0)t, t)−u0(x0); thus, the fluid particle which att = 0 was at the pointx0 moves
with a constant speedu0(x0) and the pressure function is constant. But there exist solutions
of the Euler equation with non-constant pressure.

LetXc
ex(M,ω) denote the compactly supported Hamiltonian vector fields.

Lemma 5. Let (M,ω) be a connected symplectic manifold and letα ∈ Ω2(M). If

LXα = 0, for all X ∈ Xc
ex(M,ω),

then there existsλ ∈ R such thatα = λω.

Proof. Choose a Darboux chart centered atz ∈ M, such that

ω = dx1 ∧ dy1 + · · · + dxn ∧ dyn,

and write

α =
∑
i<j

aij dxi ∧ dxj +
∑
i<j

bij dyi ∧ dyj +
∑
i,j

cij dxi ∧ dyj .

Let h be a compactly supported function onM, such thath = xi resp.h = yi locally
aroundz. Then the conditionL(ω dhα = 0 shows thataij , bij andcij are all constant locally
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aroundz. Usingh = (xi)2 one sees, thatbij = 0 andcij = 0 for i �= j . Usingh = (yi)2

yieldsaij = 0. Finally, usingh = xixj showscii = cjj . Soα = λω locally aroundz, for
some constantλ ∈ R. SinceM is connected this is true globally. �

We denote by

X(M, [ω]) := {X ∈ X(M) : ∃λ ∈ R : LXω = λω}.
Notice that for closedM we haveX(M, [ω]) = X(M,ω). Moreover ifLXω = fω for
some functionf and if dim(M) > 2 thenf is constant, due to the non-degeneracy ofω.

Lemma 6. Let (M,ω) be a symplectic manifold and letZ ∈ X(M). If

[Z,X] ∈ X(M, [ω]), for all X ∈ Xc
ex(M,ω),

thenZ ∈ X(M, [ω]).

Proof. Setα := LZω ∈ Ω2(M). Then for everyX ∈ Xc
ex(M,ω) we have

LXα = LXLZω = L[X,Z]ω = λω = 0.

Hereλ has to vanish, since [X,Z] has compact support. So by the previous lemma there
existsλ̃ ∈ R, such thatLZω = α = λ̃ω, i.e.Z ∈ X(M, [ω]). �

Proposition 1. Let (M,ω) be a symplectic manifold. Then there does not exist a Lie sub-
algebrag satisfyingX(M, [ω]) ⊂ g ⊆ X(M), such thatX(M, [ω]) has finite codimension
in g.

Proof. Supposeg is bigger thanX(M, [ω]). Then there existsZ ∈ g and an open subset
U ⊆ M, such thatZ|V /∈ X(V , [ω]), for every all openV ⊆ U . For anyk ∈ N we
choose disjoint subsetsV1, . . . , Vk ⊆ U . SinceZ|Vi /∈ X(Vi, [ω]) Lemma 6yieldsXi ∈
Xc

ex(Vi, ω), such thatYi := [Z,Xi ] /∈ X(Vi, [ω]). But Yi ∈ g and obviously{Y1, . . . , Yk}
are linearly independent ing/X(M, [ω]). Hence the codimension ofX(M, [ω]) in g is at
leastk. Sincek was arbitrary we are done. �

Corollary 3. Let (M, g, J, ω) be a closed, connected almost Kähler manifold. Then there
does not exist a closed Lie subalgebrag satisfyingX(M,ω) ⊂ g ⊆ X(M), such that
ad(·)T : g→ L(g) is bounded and such thatX(M,ω) is totally geodesic ing.

Proof. Suppose conversely such ag exists. ByRemark 1andLemma 3, X(M,ω) has an
orthogonal complement ing, consisting of Killing vector fields. So this complement has to
be finite dimensional, but this contradictsProposition 1. �

For a manifold with volume form(M,µ) we let

X(M, [µ]) := {X ∈ X(M) : ∃λ ∈: LXµ = λµ}.
Notice, that for closedM one hasX(M,µ) = X(M, [µ]). Similarly, although it does not
yield anything new for our totally geodesic subgroups, one shows.
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Proposition 2. Let (M,µ) be a manifold with volume form anddim(M) > 1. Then there
does not exist a Lie subalgebrag satisfyingX(M, [µ]) ⊂ g ⊆ X(M), such thatX(M, [µ])
has finite codimension ing.
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